Miércoles 23 de Abril de 2014 | Hay 44 usuarios online en este momento!
 

Ecuaciones lineales

Imprimir
Recomendar a un amigo
Recordarme el recurso
Descargar como pdf

Seguinos en en Facebook


Ecuaciones lineales simultáneas con tres incógnitas. Ecuaciones lineales simultáneas con dos incógnitas. Sistemas de ecuaciones.

Agregado: 21 de JULIO de 2003 (Por magcal@itelgua.com) | Palabras: 550 | Votar! |
2 votos | Promedio: 5
| Sin comentarios | Agregar Comentario
Categoría: Apuntes y Monografías > Matemáticas >
Material educativo de Alipso relacionado con Ecuaciones lineales
  • Ecuaciones e Inecuaciones- Geometria.:
  • Matematicas: conjuntos numericos, expresiones algebraicas y ecuaciones e inecuaciones: ...
  • Energía electromagnética.: Las experiencias de Faraday, La noción del flujo magnético, VARIABLES, LAS ECUACIONES MATERIALES, ECUACIONES DE MAXWELL, LA VELOCIDAD DE LA LUZ.

  • Enlaces externos relacionados con Ecuaciones lineales

    TRANSFORMAR UN SISTEMA DE ECUACIONES LINEALES SIMULTÁNEAS CON TRES INCÓGNITAS, A UN SISTEMA DE ECUACIONES LINEALES SIMULTÁNEAS CON DOS INCÓGNITAS ELIMINANDO LA  X.

    Analizada desde un enfoque diferente.

    Sea el sistema

    Combinando la ecuación 1 y 2, eliminemos X por el método de suma y resta. De la siguiente forma

    al hacer esto eliminamos x y únicamente nos queda

    Únicamente dejemos indicados de esta forma los productos, de tal forma que nos quedan dos sumandos.

    Ahora combinemos las ecuaciones originales 1 y 3, además eliminamos X y dejamos indicados los productos de la misma forma que lo hicimos en el paso anterior.

    ahora bien si nos damos cuenta nos quedan cuatro sumando en total sin desarrollar. Si los combinamos adecuadamente les podemos encontrar un factor común. Tomando en cuenta que sumaríamos un sumando del primer sistema encontrado con otro del segundo sistema, automáticamente los dos que nos sobraría deberían ser sumados y dicha suma tendría que sumársele a la primera suma que haríamos, pues en pocas palabras estaríamos sumando el primer sistema encontrado con el segundo sistema.

    Agrupando adecuadamente nos queda

    y automáticamente la otra suma sería

    Ahora la primera suma tiene un factor común y efectuándolo nos queda

    El segundo sumando también posee un factor común. Realizándolo nos queda.

    y recordemos que como sumamos los dos sistemas que habíamos encontrado, a los dos que les sacamos factor común también debemos sumarlos. Por lo tanto nos queda.

    al realizar dicha suma encontraríamos una ecuación lineal,

    a cuyos coeficientes denotaremos de la siguiente forma

    esta es una ecuación lineal con dos incógnitas si encontramos otra ecuación lineal con dos incógnitas podremos formar un sistema con ambas y resolviéndola mediante los métodos conocidos obtendríamos los resultados de dos incógnitas, restándonos encontrar únicamente una.

    Combinando las ecuaciones originales 1 y 2, eliminando X  y dejando únicamente indicados los productos tenemos

    ahora si combinamos las ecuaciones originales 2 y 3 y hacemos lo mismo que el paso anterior obtenemos

    ahora si combinamos los sumandos de la primera suma con los de la segunda de una forma adecuada podemos sumarlos mediante un factor común al hacerlo encontramos

    el otro sumando es

    ahora debemos sumar ambos

    efectuando la suma encontraríamos otro sistema de ecuaciones lineales con dos incógnitas

    que denotaremos por

    que era la ecuación que buscaba para poder formar un sistema con la anteriormente encontrada, de la siguiente forma.

    que su resolución (método de suma y resta o reducción, igualación, determinantes ó gráficamente) me permite conocer dos de las variables desconocidas ( “Y”  y  Z” ) y para conocer “X” únicamente deberíamos sustituir estos valores en cualquiera de las tres ecuaciones originales.

    En conclusión las fórmulas para transformar un sistema de Ecuaciones lineales simultánea con 3 incógnitas a un sistema de ecuaciones lineales con dos incógnitas son:

    donde los coeficientes de la ecuación lineal simultánea con tres incógnitas están denotados por:

    IRVIN CALDERÓN.

    16 AÑOS

    Guatemala

    mailto:magcal@itelgua.com


     
    Sobre ALIPSO.COM

    Monografias, Exámenes, Universidades, Terciarios, Carreras, Cursos, Donde Estudiar, Que Estudiar y más: Desde 1999 brindamos a los estudiantes y docentes un lugar para publicar contenido educativo y nutrirse del conocimiento.

    Contacto »
    Contacto

    Teléfono: +54 (011) 3535-7242
    Email:

    Formulario de Contacto Online »
     
    Cerrar Ventana
    ALIPSO.COM
    Cursos Multimedia Online, CD y DVD