CENTRO DE CAPACITACION

Secundarios - CBC - Universitarios - Informática - Idiomas

Apunte Nº 89

				1	1	
UADE-Investigación Operativa	Primer Parcial	Alumno:		M		
Aula Nº 1222	Fecha: 01.10.99	Tema Nº 03	Calificación:	-	/	

Ej.Nº 1

Una empresa produce y comercializa 3 productos P1, P2, P3 con contribuciones marginales unitarias de \$12, \$20 y \$5, respectivamente.

El proceso de producción requiere de tres materias primas $R_1,\ R_2,\ R_3$, siendo la disponibilidad máxima diaria de las mismas de 630, 460 y 520 kg, respectivamente. Los requerimientos de materia prima por unidad de producto son:

	P_1	P ₂	P ₃
R_1	3	2	4
R ₂	4	2	1
R3	1	0	4

La demanda máxima diaria de P₁ es de 250 unidades y la demanda mínima de P₂ es de 10 unidades

Escribir la inecuaciones y ecuaciones correspondientes al problema dual asociado

Ei.Nº 2

Hallar la solución gráfica (variables reales y de holgura) del siguiente problema

Ej.Nº 3

Una juguetería artesanal debe programar la producción de dos de sus artículos para la próxima temporada. Los principales insumos de estos productos son la materia prima (MP) y la mano de obra (MO).

Se dispone de los siguientes datos.

		Articulo A	Artículo B	Restricción
	Materia Prima	3kg/unidad	5kg/unidad	kg
-	Mano de Obra	2 hs/unidad	4 hs/unidad	90 hs
-	Beneficio	32\$/unidad	55\$/unidad	
denument	Demanda máx	50 unidades	50 unidades	

La Tabla óptima del Simplex es la siguiente:

		Cj				100		
С	X	В	X_1	X_2	λ_1	7.2	7.3	Ž.,;
	λ,	10		-1		-1.5		
	X_1	45		2		0.5		
	λ ₃	5		-2		-0.5		
	λ_4	50		¥0.		0		
	Zi - Ci							

4

Se pide:

 Interpretar la solución óptima del problema detallando:Plan de producción y máximo ingreso por ventas; porcentaje de sobrante de MP y de MO; porcentaje de demanda insatisfecha de cada producto; precios sombra y costos de oportunidad.

2) Cuál debiera ser el beneficio del artículo A para que deje de ser rentable Z7, 5 \$

3) Cuál es el ingreso marginal de la MO y hasta cuántas horas adicionales se mantiene constante y qué valor tomaría si se supera ese límite 16;666 Hs Adac, 2,5

4) Si se debe producir una unidad del artículo B cuál sería el nuevo plan de producción y cuál sería el ingreso total.
X₁ = 43
X₂ = 1
Z = 1422

X1=45 X2=0 Z=1440 6,81. MP 07. MO 107. Dx 111. Xx 1407. V X2 YZ=16 ADZ=9