CENTRO DE CAPACITACION

Secundarios - CBC - Universitarios - Ingresos - Informática - Idiomas

5

APUNTE Nº 394

FINAL INVESTIGACION OPERATIVA JULIO DE 1999

1) Hallar las soluciones del siguiente p.p.l. y realizar el análisis de post-optimalidad para x₂ y S₁

Maximizar z = 5 . x₁ + 3 . x₂ + 2 . x₃ . Sujeto a

 $3 x_1 + 2 x_2 + 1 x_3 \le 10$

 $1. x_1 - 1. x_2 + 2 x_3 \ge 8$ $1 x_1 + 1 \cdot x_2 + 4 \cdot x_3 \le 18$

2) Un proyecto se compone de 7 actividades, para las cuales se presenta la matriz de procedencias inmediatas la duración en días (t) de cada actividad.

	a₁	a ₂	a ₃	a ₄	a ₅	a ₆	a ₇	a,	t	
a ₁								1	5	٦
.a ₂			1						3	
a ₃									2	1
a₄	1	1							4	7
a ₅							1		3	٦
a ₆				1					6	1
a,								1	2	1
.a _e									3	1

Se pide:

- a) realizar la red correspondiente
- b) indicar en la red las fechas esperadas y últimas fechas de los nodos
- c) marcar en la red el camino crítico
- 3) Una compañía ha recopilado la siguiente información concerniente a la pieza comprada Nº 443: La demanda anual es de 60.000 unidades. La cía, trabaja 30 días al mes. El costo de adquisición por pedido es de U\$S 50. Los costos unitarios de mantenimiento de inventario son de U\$S 0.8. El tiempo de adelanto es de 1. días. La cía, ha determinado que puede permitirse un 1% de riesgo de agotamiento de las existencias y una tasa de almacenamiento del 15% anual. Determinar: a) la cantidad óptima de pedido, b) las existencias de seguridad c) la duración del período de revisión, para el sistema de control de inventarios de cantidad variable y ciclo fijo.
- 4) Un fabricante tiene en existencia en cada una de dos locales 2400 unidades y 2000 unidades de un ciertí producto, respectivamente. Recibe órdenes de compra por parte de 4 empresas, en cantidades de 2000, 1400 1000 y 600 respectivamente.

	empresa						
		•1	2 3 4				
Loc	c 1 0.		0.26	0.22	0.24		
	2	0.24	0.26	0.26	0.30		

Los costos unitarios (en \$ por unidad) de los locales a las empresas aparecen en la tabla anterior.

Determinar una cédula de embarque de costo total mínimo Sin desabastecer a la empresa 1

1) Hallar las soluciones del siguiente p.p.l. y realizar el análisis de post-optimalidad para x2 y S1

Maximizar z = $2.x_1 + 3.x_2 + 5.x_3$

Sujeto a $4 x_1 + 1 \cdot x_2 + 1 \cdot x_3 \le 18$

 $2. x_1 - 1. x_2 + 1. x_3 \ge 8$

 $1 x_1 + 2 x_2 + 3 x_3 \le 10$

2) En la siguiente tabla se presentan las actividades que componen un proyecto, juntamente con la duración er

días.								
Activ (I,J)	t (I,J)	FET (I,J)	FE(J)	UF(J)	UFC(I,J)	HT(I,J)	HS(I,J)	1
1-2	10							1
1-3	20							1
2-4	30							ĺ
3-4	30							1
3-5	20							١
4-6	50							
4-7	40		_					1
5-7	10							
5-8	30							
6-8	60							
								1

Se pide:

- a) completar la tabla indicando las fechas esperadas y últimas fechas de los nodos, fechas esperadas de terminación, últimas fechas admisibles y holguras total y secundaria.
- b) Clasificar los caminos según su holgura total.

3) Un fabricante tiene en existencia en cada una de dos locales 2000 unidades y 2400 unidades de un cierto producto, respectivamente. Recibe ordenes de compra por parte de 4 empresas, en cantidades de 2000, 1400, 1000 y 600 respectivamente.

	Empresa					
		1	2	3	4	1
Loc.	1	30	26	26	30	ו
	2	28	26	28	24	ء 1

Los costos unitarios (en ctvos, por unidad) de los locales a Las empresas aparecen en la tabla.

Determinar una cédula de embarque de costo total mínimo 26 | 28 | 24 | sin desabastecer a la empresa 1

4) Una compañía de renta de autos tiene en ca una de 6 ciudades (1, 2, 3, 4, 5, 6) en exceso

auto y un déficit de 1 auto en cada una de otras 4 ciudades (7,8,9 y 10)

Las distancias entre ellas son las que se Presentan en la tabla. ¿ Cómo deberían enviarse los autos para hacer mínima la distancia total recorrida?

ada		A					
1		7	8	9	10		
	1	22	29	49	65		
	2	27	39	60	51		
De	3	45	50	48	52		
	4	29	40	39	26		
	5	82	40	40	60		
ļ	6	41	72	39	52		