Las proteinas - ALIPSO.COM: Monografías, resúmenes, biografias y tesis gratis.
Aprende sobre marketing online, desarrollo de sitios web gratis en Youtube
Suscribite para recibir notificaciones de nuevos videos:
Viernes 29 de Marzo de 2024 |
 

Las proteinas

Imprimir Recomendar a un amigo Recordarme el recurso

Definicion, funciones, necesidades, alimentacion, la sintesis de proteinas, el ARNt, etc.

Agregado: 24 de MAYO de 2000 (Por ) | Palabras: 4869 | Votar |
2 votos | Promedio: 5
| Sin comentarios | Agregar Comentario
Categoría: Apuntes y Monografías > Biología >
Material educativo de Alipso relacionado con Las proteinas
  • Biografia y vida de Nicholas Vachel Lindsay: Breve Biografia de Nicholas Vachel Lindsay
  • Biografia y vida de marqués Nicolas Joseph Maison: Breve Biografia de marqués Nicolas Joseph Maison
  • Traducción o síntesis de proteínas: Traducción o síntesis de proteínas

  • Enlaces externos relacionados con Las proteinas

    DEFINICION

    También llamadas sustancias albuminoideas (nombre derivado de la albúmina o clara de huevo, que es un caso típico). Son compuestos formados por carbono, nitrógeno, hidrógeno y oxigeno, a los que se añaden siempre el fósforo y el azufre.

    FUNCIONES

    Las proteínas son empleadas por el organismo para la estructuración de los tejidos y como material de repuesto de los tejidos que se van gastando en el desarrollo de la vida. También juegan un papel energético, pero menos importante que el de las grasas o carbohidratos.

    NECESIDADES

    Las necesidades proteicas del organismo son cubiertas por la alimentación, pero el organismo no puede utilizarlas directamente, tienen que transformarse durante el proceso de la digestión, reduciéndose a sus más sencillos componentes, los aminoácidos.

    ALIMENTACION

    Las proteínas serán obtenidas tanto a partir del reino animal como del reino vegetal.

    De los veintitantos aminoácidos que suelen participar en nuestra alimentación, nueve de ellos son los llamados aminoácidos esenciales, de los que el cuerpo ha de disponer siempre en su dieta.

    De ahí que no baste con que en la ración alimenticia haya el mínimo necesario de proteínas, también a de aportarse la suficiente cantidad de estos aminoácidos esenciales.

    Este es uno de los argumentos para combatir las dietas estrictas, como por ejemplo la dieta vegetariana (las plantas o vegetales es donde los aminoácidos esenciales se encuentran en franca minoría o faltan). Aproximadamente la mitad de las proteínas necesarias para nuestra alimentación son de origen animal, siendo la leche y sus productos derivados los más completos ya que contienen casi todos los aminoácidos esenciales. Los niños en edad de crecimiento precisan en su dieta, proporcionalmente, una mayor cantidad de proteínas que los adultos.

    PROTEINAS

    Materia alimenticia animal % Proteínas Materia alimenticia vegetal % Proteínas

    Carne magra 20% Legumbres 24%

    Carne grasa 15% Harina de trigo 11%

    Leche de vaca 3% Pan 8%

    Huevos 13% Patatas,Col 2%

    Fruta 1%

    Síntesis de proteínas

    La traducción del ARNm

    INTRODUCCION

    El ARN mensajero es el que lleva la información para la síntesis de proteínas, es decir, determina el orden en que se unirán los aminoácidos

    La síntesis de proteínas o traducción tiene lugar en los ribosomas del citoplasma celular. Los aminoácidos son transportados por el ARN de transferencia (ARNt) , específico para cada uno de ellos, y son llevados hasta el ARN mensajero (ARNm), dónde se aparean el codón de éste y el anticodón del ARN de transferencia, por complementariedad de bases, y de ésta forma se sitúan en la posición que les corresponde.

    Una vez finalizada la síntesis de una proteína, el ARN mensajero queda libre y puede ser leído de nuevo. De hecho, es muy frecuente que antes de que finalice una proteína ya está comenzando otra, con lo cual, una misma molécula de ARN mensajero, está siendo utilizada por varios ribosomas simultáneamente.

    Los ARNt desempeñan un papel central en la síntesis de las proteínas

    La síntesis proteica tiene lugar en el ribosoma, que se arma en el citosol a partir de dos subunidades riborrucleoproteicas provenientes del nucléolo. En el ribosoma el ARN mensajero (ARNm) se traduce en una proteína, para lo cual se requiere también la intervención de los ARN de transferencia (ARNt). El trabajo de los ARNt consiste en tomar del citosol a los aminoácidos y conducirlos al ribosoma en el orden marcado por los nucleótidos del ARNm, que son los moldes del sistema

    La síntesis de las proteínas comienza con la unión entre sí de dos aminoácidos y continúa por el agregado de nuevos aminoácidos -de a uno por vez- en uno extremos de la cadena.

    Como se sabe la clave de la traducción reside en el código genético, compuesto por combinaciones de tres nucleótidos consecutivos -o tripletes- en el ARNm. Los distintos tripletes se relacionan específicamente con tipos de aminoácidos usados en la síntesis de las proteínas.

    Cada triplete constituye un codón: existen en total 64 codones, 61 de los cuales sirven para cifrar aminoácidos y 3 para marcar el cese de la traducción. Tal cantidad deriva de una relación matemática simple: los cuatro nucleótidos (A, U, C y G)se combinan de a tres, por lo que pueden generarse 64 (43).

    Dado que existen más codones, (61) que tipos de aminoácidos (20), casi todos pueden ser reconocidos por más de un codón, por lo que algunos tripletes a como "sinónimos". Solamente el triptófano y la metionina -dos de los aminoácidos menos frecuentes en las proteínas - son codificados, cada uno, por un solo codón

    Fig. A-1. Los dibujos ilustran cuatro de los seis codones que codifican al aminoácido leucina (Leu). Los dos de la izquierda se aparean con un mismo anticodón, igual que el par de codones de la derecha. Ello es posible porque la tercera base de los codones suele ser "adaptable ", es decir, puede establecer uniones con una base no complementaria.

    Generalmente los codones que representan a un mismo aminoácido se parecen entre sí y es frecuente que difieran sólo en el tercer nucleótido. La baja especificidad de este nucleótido ha llevado a decir que existe una "degeneración" en tercera base de la mayoría de los codones. Resta agregar que el número de codones en el ARNm determina la longitud de la proteína.

    Existen 31 tipos diferentes de ARNt

    Las moléculas intermediarias entre los codones del ARNm y los aminoácidos son los ARNt, los cuales tienen un dominio que se liga específicamente a uno de los 20 arninoácidos y otro que lo hace, específicamente también, con el codón apropiado. El segundo dominio consta de una combinación de tres nucleótidos -llamada anticodón - que es complementaria de la del codón.

    Cada tipo de ARNt lleva antepuesto el nombre del aminoácido que transporta. por ejemplo, leucinil-ARNt para el aminoacil-ARNt de la leucina, lisinil-ARNt para el de la lisina, fenilalanil-ARNt para el de la fenilalanina, metionil-ARNt para el de la metionina, etcétera.

    Por su lado. El ARNt unido al aminoácido compatible con él se designa aminoacil-ARNtAA, en el que "AA" correspnde a la sigla del aminoácido. Por ejemplo, leucinil-ARNtLeu, lisinil-ARNtlys, fenilalanil-ARNtPhe. metionil-ARNtMet, etcétera.

    Si bien teóricamente pueden existir 61 tipos de ARNt diferentes, sólo hay 31. El déficit se resuelve por la capacidad que tienen algunos ARNt de reconocer a más de un codón. Lo logran porque sus anticodones suelen poseer la primera base "adaptable", es decir, que puede unirse con una base no complementaria situada en la tercera posición del codón (recuérdese la "degeneración" de esta base).

    Así, la G en la primera posición del anticodón puede aparearse tanto con una C -es lo habitual - como con una U del codón (fig. A-1). Similarmente, la U en la primera posición del anticodón puede hacerlo con una A -es lo habitual - o con una G. Por otra parte, la inosina (I) -una de las bases inusuales se encuentra en la primera posición del anticodón en varios ARNt y es capaz de aparearse con cualquier base (excepto con una G) localizada en la tercera posición del codón.

    El codón de iniciación es el triplete AUG

    El primer codón que se traduce en los ARNm es siempre el triplete AUG. cuya información codifica al aminoácido metionina (fig. A-2). Por lo tanto, este codón cumple dos funciones: señala el sitio de comienzo de la traducción -caso en el cual recibe el nombre de codón de iniciación -, y cuando se halla en otras localizaciones en el ARNm codifica a las metioninas del interior de las moléculas proteicas.

    Al especificar el primer aminoácido de la proteína, el codón AUG de iniciación determina el encuadre de los sucesivos tripletes, lo que asegura la síntesis correcta de la molécula. Tómese como ejemplo la secuencia AUGGCCUGUAACGGU. Si el ARNm es traducido a partir del codón AUG, los codones

    siguientes serán GCC, UGU, AAC y GGU, que codifican, respectivamente, a los aminoácidos alanina, cisteina ,asparagina y glicina. En cambio, si se omitiera la A del codón de iniciación, el encuadre de los tripletes sería el siguiente: UGG, CCU, GUA y ACG, los cuales se traducen en los aminoácidos triptófano, prolina, valina y treonina, respectivamente.

    Algo semejante ocurriría si también se omitiera la U, pues resultaría un tercer tipo de encuadre: GGC, CUG, UAA y CGC. En este caso, después de codificar los dos primeros codones a los aminoácidos glicina y leucina, la traducción se detendría, ya que UAA es un codón de terminación.

    Fig. A-2

    Los aminoácidos se ligan por medio de uniones peptídicas

    La unión de los aminoácidos entre sí para construir una proteína se produce de modo que el grupo carboxilo de un aminoácido se combina con el grupo a amínoácido siguiente, con pérdida de una molécula de agua H2O y recordemos que esa combinación se llama unión peptídica.

    Cualquiera que sea su longitud, la proteína mantiene el carácter anfotérico de los aminoácidos aislados, ya que contiene un grupo amino libre en uno de sus extremos y un grupo carboxilo en el otro extremo. La proteína se sintetiza a partir de extremo que lleva el grupo amino libre. Ello se corresponde con la dirección 5´ (r) 3´ usada para la traducción del ARNm, la misma con que el ADN se transcribe (ver figura )

    Antes de describir los procesos que dan lugar a la síntesis de las proteínas analizaremos cómo arriban los ARNm al citoplasma, qué configuración poseen los ARNt y cuál es la estructura de los ribosomas.

    Los ARNm arribados al citoplasma se conectan con ríbosomas

    Los transcriptos primarios de los ARNm se hallan combinados con diversas proteínas, con las que forman las nueleoproteínas heterogéneas nucleares o RNPhn.. No obstante, muchas de esas proteínas se desprenden de los ARNm a medida que éstos abandonan el núcleo.

    Los ARNm salen hacia el citoplasma por los poros de la envoltura nuclear. Ya en el citosol, cada ARNm se combina con nuevas proteínas y con ribosomas, lo que lo habilita para ejercer su función codificadora durante la síntesis proteica. Entre las proteínas se encuentra la llamada CBP (por cap binding protein), que se combina con el cap en el extremo 5´ del ARNm. Su papel será analizado más adelante.

    Algunos ARNm se localizan en sitios prefijados en el citoplasma, de modo que las proteínas que codifican se sintetizan y se concentran en esos sitios. Un ejemplo es el ARNm de la actina, que se sitúa en la zona periférica de las células epiteliales donde se deposita la mayor parte de la actina .

    El extremo 5' de los ARNm contiene una secuencia de alrededor de 10 nucleótidos previa al codón de iniciación -entre éste y el cap - que, como es lógico, no se traduce (fig. A-2). En algunos ARNm esta secuencia participa en el control de 1a traducción y en otros regula la estabilidad del ARNm, es decir, su supervivencia.

    Otra secuencia especial del ARNm, de hasta miles de nucleótidos, suele hallarse después del codón de terminación. entre éste y la poli A (fig. A-2). Tiene por función controlar la supervivencia del ARNm.

    Las moléculas de los ARNt adquieren una forma característica

    Hemos visto que los codones del ARNm no seleccionan a los aminoácidos directamente y que la traducción de los ARNM en proteínas depende de un conjunto de moléculas intermediarias -los ARNt- que actúan como adaptadores, ya que discriminan tanto a los codones del ARNm como a los aminoácidos compatibles con ellos.

    Así la función básica de los ARNt es alinear a los aminoácidos siguiendo el orden de los codones para poder cumplir con sus funciones, los ARNt ,adquieren una forma característica semejante a un trébol de cuatro hojas (fig. A-3). Los cuatro brazos se generan por la presencia en los ARNt de secuencias de 3 a 5 pares de nuelcótidos complementarios, los cuales se aparean entre sí como los nucleótidos de las dos cadenas del ADN.

    En la punta de uno de los brazos confluyen los extremos 5' y 3´ del ARNt. El extremo 3´ es más largo, de modo que sobresale el trinucleótido CCA que fue incorporado durante el procesamiento. Este brazo se llama aceptador porque a él se liga el aminoácido, que se une a la A del CCA.

    Los tres brazos restantes poseen en sus extremos secuencias de 7 a 8 nucleótidos no apareados, -con

    forma de asas -, cuyas denominaciones derivan de los nucleótidos que las caracterizan. Una de ellas contiene el triplete de nueleótidos del anticodón, por lo que su composición varía en cada tipo de ARNt. Otra, en virtud de que contiene dihidrouridinas (D), se denomina asa D. La tercera se conoce como asa T, por el trinucleótido Ty C que la identifica. La letra T simboliza a la ribotimidina y la y a la seudouri dina.

    Entre el asa T y el anticodón existe un asa adicional, llamada variable porque su longitud difiere en los distintos ARN de transferencia.

    Un plegamiento ulterior en el ARNt hace que deje de parecerse a un trébol de cuatro hojas y adquiera la forma de la letra L (fig. A-4). El cambio se debe a que se establecen apareamientos inusuales entre algunos nueleótidos, como la combinación de un nucleótido con dos a la vez.

    Formada la L, las asas D y T pasan a la zona de unión de sus dos ramas y el brazo aceptador y el triplete de bases del anticodón se sitúan en las puntas de la molécula (fig. A-4).

    FIGURA A-3­

    FIGURA A-4­

    Una aminoacil-ARNt sintetasa une el aminoácido al ARNt

    El aminoácido se liga a su correspondiente ARNt por la acción de una enzima llamada aminoacil-ARNt sintetasa, que cataliza la unión en dos pasos.

    Durante el primero, el aminoácido se liga a un AMP , con el cual forma un aminoacil AMP. Por ejemplo leucinil -AMP , lisinil AMP, fenilalanil AMP, metionil-AMP, etc.. Dado que el AMP deriva de la hidrólisis de un ATP , se libera pirofosfato (PP) y energía , que también pasa al aminoacil- AMP

    AA + ATP(r) AA-AMP + PP

    En el segundo paso esa energía es utilizada por la aminoacil ARNt sintetasa para transferir el aminoácido del aminoacil -AMP a la A del brazo aceptador del ARNt compatible, con lo cual se forma una molécula esencial para la síntesis proteica: el aminoacil-ARNtAA que reconoce el codón complementario en el ARNm.

    AA-A + ARNt (r) ( AMINOACIL SINTETASA)(r) AA-ARNtAA + AMP

    Debe señalarse que la energía del ATP usada en la primera reacción queda depositada en la unión química entre el aminoácido y la A del trinucleótido CCA.

    Existen 20 amínoacil - ARNt sintetasas diferentes

    Existen 20 aminoacil-ARNt sintetasas diferentes, cada una diseñada para reconocer a un aminoácido y al ARNt compatible con él. Ambos reconocimientos permiten que cada uno de los 31 tipos de ARNt

    se ligue sólo a uno de los 20 aminoácidos usados en la síntesis proteica. Ello es posible porque cada aminoacil ARNt sintetasa identifica al ARNt por el anticodón, la parte más específica del ARNt (Fig A-3). No obstante, en los ARNt existen otras señales que son reconocidas por la enzima, generalmente tramos de nucleótidos cercanos al anticodón.

    Como es obvio, la existencia de 11 clases de ARNt hace que algunos aminoácidos sean reconocidos por más de un ARNt.

    Uno de los ARNt redundantes es el llamado ARNt iniciador o ARNt[i], pues transporta a la metionina destinada exclusivamente al codón AUG de iniciación (FIG A-9). Es muy probable quecerca de ese codón existan señales que diferencien al metionil-ARNt[i]met -portador de la metionina dirigida a él- de los metionil ARNtmet comunes, portadores de las metioninas destinadas a los restantes codones AUG del ARNm.

    Los ribosomas están compuestos por dos subunidades

    Los mecanismos para alinear a los aminoacil ARNtAA de acuerdo con el orden de los codones del ARNm son algo complicados. Requieren de los ribosomas cuya primera tarea es localizar al codón AUG de iniciación y acomodarlo correctamente para que el encuadre de ese triplete y el de los siguientes sea el adecuado.

    Luego el ribosoma se desliza hacia el extremo 3´del ARNm y traduce a los sucesivos tripletes en aminoácidos. Estos son traídos - de a uno por vez - por los respectivos ARNt. Las reacciones que ligan a los aminoácidos entre sí - es decir , las uniones peptídicas - se producen dentro del ribosoma . Finalmente, cuando el ribosoma arriba al codón de terminación - en el extremo 3´del ARNm - cesa la síntesis proteica y se libera la proteína. Como podemos notar, los ribosomas constituyen las "fábricas de las proteínas"

    Cada ribosoma está compuesto por dos subunidades - una mayor y otra menor - identificadas con las siglas 40S y 60S respectivamente (los números hacen referencia a los coeficientes de sedimentación de las subunidades, es decir a las velocidades con que sedimentan cuando son ultracentrifugadas, la 60S migra más rápido al fondo del tubo).

    En la subunidad menor algunas proteínas forman dos áreas - una al lado de la otra - denominadas sitio P (por peptidil) y sitio A (por aminoacil).

    Por otro lado en la subunidad mayor las proteínas ribosómicas formarían un túnel por el que saldría la cadena polipeptídica a medida que se sintetiza

    Las etapas de la síntesis de proteínas

    La síntesis de las proteínas se divide en tres etapas, llamadas de iniciación , de alargamiento y de terminación (fig. A-9).

    El comienzo de la síntesis proteica requiere de varios factores de iniciación

    La etapa de iniciación es regulada por proteínas citosólicas denominadas factores de iníciación (IF), que provocan dos hechos separados pero concurrentes , uno en el extremo 5´del ARNm y otro en la subunidad menor del ribosoma

    El primer proceso involucra al cap y a una secuencia de nucleótidos aledaña, localizada entre el cap y el codón de iniciación . Estas partes reconocidas por el factor IF-4, que se liga a ellas sí al ARNm se proteína CBP . La conexión del IF-4 con el ARNm insume energía que es provista por un ATP.

    En el segundo proceso, el metioníl-ARNt[i]met se coloca en el sitio P de la subunidad menor del ribosoma, reacción que requiere el factor IF-2 y la energía de un GTP.

    Logrados ambos acondicionamientos, otro factor de iniciación, el IF-3, con la ayuda del IF-4 coloca el extremo 5´ del ARNm sobre una de las caras de la unidad menor del ribosoma, la que posee los sitios P y A.

    De inmediato la subunidad menor se desliza por el ARNm y detecta al codón de AUG de iniciación, que se coloca, en el sitio P . Como es lógico , el segundo codón del ARNm queda colocado al lado, es decir en el sitio A.

    Entre tanto, el metioril-ARNt[i]met ,' ubicado en el sitio P de la subunidad menor, se une al codón AUG de iniciación mediante su anticodón CAU (UAC¬ ). El acoplamiento correcto entre estos dos tripletes es imprescindible para asegurar el encuadre normal de los siguientes codones del ARNm en los sitios P y A del ribosoma.

    La etapa de iniciación concluye cuando la subunidad menor se combina con la subunidad mayor y se forma el ribosoma. En él se encuentran los primeros dos codones del ARNm: en el sitio P el codón AUG de iniciación -unido al metionilARNt[i]met- y en el sitio A el codón que le sigue.

    La unión entre sí de las dos subunidades ribosómicas se produce luego del desprendimiento del IF-2 y del IF-3, lo cual es mediado por el factor IF-5.

    El alargamiento de la cadena proteica es promovido por factores de elongación

    La etapa de alargamiento comienza cuando al sitio A del ribosoma se acerca otro aminoacil-ARNtAA, compatible con el segundo codón del ARNm, con el cual se une. La reacción es mediada por un factor de elongación llamado EF-1 y consume energía, que es aportada por un GTP.

    Al quedar el aminoacil-ARNtAA cerca del metionil-ARN[t]met. la metionina localizada en el sitio P, al tiempo que se desacopla del. ARNt[i], se liga - mediante una unión peptidica - al aminoácido ubicado en el sitio A. Se forma así un dipeptidil-ARNt, que continúa ubicado en el sitio A. Su permanencia en este sitio es breve, en seguida veremos por qué.

    La unión peptídica es catalizada por la subunidad mayor del ribosoma. Debe agregarse que la energía requerida para consumar esa unión proviene de la ruptura de otra unión química , aquella que liga al aminoácido con la adenina en el brazo aceptador del ARNt. Como en el caso del metionil - ARNt [i]met, la ruptura química tiene lugar siempre en el sitio P.

    Entre tanto, fuera del ribosoma, esperando para ingresar, se encuentra el tercer codón del ARNm. Aborda el ribosoma cuando el ARNm se corre tres nucleótidos en dirección de su extremo 5´. Este proceso - llamado traslocación - es mediado por el el factor de elongación EF-2 y también consume energía ahora aportada por un GTP.

    Como vemos, desde el punto de vista energético la síntesis proteica es bastante costosa, ya que por cada aminoácido que se incorpora se consumen dos GTP y un ATP, el último gastado durante 1a síntesis del aminoacil-ARNtAA

    El corrimiento del ARNm hace que el codón de iniciación sea desalojado del sitio P sitio P -y, por consiguiente, del ribosoma- el segundo codón se mude del sitio A al sitio P y el tercer codón ingrese en el sitio A vacante. Lógicamente el corrimiento de los codones desplaza también a los ARNt , por lo que el ARNt[i] sale del ribosoma -no tarda en desprenderse del codón de iniciación - y el dipéptido pasa del sitio A al sitio P.

    Mientras tanto, un tercer aminoacil-ARNtAA ingresa en le ribosoma , se acomoda en el sitio A y su anticodón se une al tercer codón de ARNm, otra vez por la intervención del EF-1. Debe señalarse que el EF-1 actúa después que el EF-2 se retira del ribosoma, y viceversa.

    El paso siguiente comprende la formación de una unión peptídica entre el dipéptido y el aminoácido del tercer aminoacil -ARNt AA. Esta unión peptídica, ahora entre e dipéptido y el aminoácido del tercer aminoacil-ARNtAA. Esta unión peptídica genera un tripeptidil -AARNt, que permanece en el sitio P hasta la próxima translocación del ARNm.

    Los procesos citados se repiten de forma sucesiva codón tras codón ; así , en el cuarto paso se forma un tetrapeptidil ARNt y luego peptidil - ARNt cada vez más largos , que se traslocan del sitio A al P conforme se producen las uniones peptídicas. Se calcula que se agregan a la cadena, en promedio, cinco aminoácidos por segundo.

    Debido a que con cada traslocación se corren tres nucleótidos del ARNm , su extremo 5´se aleja progresivamente del ribosoma y su extremo 3´se acerca a él en igual medida. Cuando el ribosoma se ha alejado del extremo 5´del ARNm unos 90 nucleótidos, en el codón de iniciación se acomoda un nuevo ribosoma, lo cual da inicio a la síntesis de otra cadena proteica. Esto se repite varias veces .

    La síntesis proteica concluye cuando el ribosoma alcanza el codón de terminación

    La etapa de terminación determina la conclusión de la síntesis de la proteína cuando el sitio A del ribosoma es abordado por el codón de terminación del ARNm (UUA, UGA o UAG, indistintamente). Ello deja al sitio A sin el esperado aminoacil-ARNtAA, aunque pronto es ocupado por un factor de terminación llamado eRF (eucaryotic releasing factor), que sabe reconocer a los tres codones de terminación.

    En síntesis la terminación de la cadena polipeptídica está señalada por el ARNm mediante un codón que no especifica la incorporación de ningún aminoácido . Ese codón de terminación puede ser UUA, UGA o UAG, y sobre él no se une ningún ARNt. En cambio, es reconocido por dos proteínas llamadas factores de liberación (eRF). Cuando esto sucede, la proteína terminada se libera del último ARNt, que también se separa del ARNm. Por último también se disocian las subunidades ribosómicas. Todos estos elementos pueden ser reutilizados en una nueva síntesis.

    RESUMEN

    Tres etapas en la síntesis de proteínas. a) Iniciación. La subunidad ribosómica más pequeña se une al extremo 5´ de una molécula de ARNm. La primera molécula de ARNt, que lleva el aminoácido modificado fMet, se enchufa en el codón iniciador AUG de la molécula deARNm. La unidad ribosómica más grande se ubica en su lugar, el ARNt ocupa el sitio P (peptidico). El sitio A (aminoacil) está vacante. El complejo de iniciación está completo ahora.

    b) Alargamiento. Un segundo ARNt con su aminoácido unido se mueve al sitio A y su anticodón se enchufa en el mRNA. Se forma un enlace peptidico entre los dos aminoácidos reunidos en el ribosoma. Al mismo tiempo, se rompe el enlace entre el primer aminoácido y su ARNt. El ribosoma se mueve a lo largo de la cadena de ARNm en una dirección 5´ a 3´ y el segundo ARNt, con el dipéptido unido se mueve al sitio P desde el sitio A, a medida que el primer ARNt se desprende del ribosoma. Un tercer ARNt se mueve al sitio A y se forma otro enlace peptídico. La cadena peptídica naciente siempre está unida al tRNA que se está moviendo del sitio A al sitio P, y el ARNt entrante que lleva el siguiente aminoácido siempre ocupa el sitio A. Este paso se repite una y otra vez hasta que se completa el polipéptido. c) Terminación. Cuando el ribosoma alcanza un codón de terminación (en este ejemplo UGA), el polipéptido se escinde del último ARNt y el ARNt se desprende del sitio P. El sitio A es ocupado por el factor de liberación que produce la disociación de las dos subunidades del ribosoma

    .

    APLICACIONES

    Dos temas médicos vinculados con la actividad de los ribosomas

    Al ser invadidas por bacterias, las células de algunos organismos inferiores elaboran sustancias llamadas antibióticos para defenderse de la infección. En muchos casos los antibióticos logran sus objetivos interfiriendo la síntesis proteica en los ribosomas de las bacterias, lo que las mata. Por ejemplo, el cloranfenicol impide las uniones peptídicas, la estreptomicina afecta el inicio de la traducción y distorsiona la fidelidad de la síntesis, la eritromicina bloquea la translocación del ARNm, la tetraciclina no permite que los aminoacil-ARNtAA ingresen en el sitio A, la kirromiicina inhibe la actividad de los factores de elongación y la puromicina usurpa el sitio A del ribosoma, de modo que la cadena peptídica se liga al antibiótico y no a un aminoacil-ARNtAA, lo que interrumpe su síntesis.

    La medicina ha trasladado estos efectos a otros escenarios biológicos, particularmente al organismo humano. Así, cuando determinadas bacterias lo infectan, éstas pueden ser destruidas mediante la administración de antibióticos.

    Debe advertirse que la puromicina afecta también a los ribosomas de las células eucariotas, y por ello su uso farmacológico es muy restringido. Por su parte, el cloranfenicol, la eritromicina, la tetraciclina y la kirromicina, si bien interfieren levemente la síntesis proteica en los ribosomas eucarióticos citosólicos, afectan mucho más la de los ribosomas de las mitocondrias , lo cual reafirma la teoría endosimbiótica.

    Otro tema médico vinculado con los ribosomas corresponde al mecanismo de acción de la toxina diftérica , que ingresa en la célula por endocitosis y ribosila al factor de elongación EF-2 , lo cual lo anula. Ello conduce en poco tiempo a la muerte.

    BiBLIOGRAFíA

    -Murray, R. Et al(1997): BIOQUIMICA DE HARPER; Editorial El Manual Moderno. México.

    -Curtis- Barnes (1994): BIOLOGIA. Editorial Médica Panamericana. Buenos Aires.

    -De Robertis-Hib (1998):Fundamentos de Biologia Celular y Molecular. El Ateneo. Buenos Aires

    -Castro et al (1996): Actualizaciones en Biología. Eudeba. Buenos Aires.

    PROTEINAS

    Las encontramos en la carne, la leche y sus derivados, los huevos, las legumbres.

    Las proteínas son degradadas durante la digestión a aminoácidos, que son transportados por la sangre y distribuidos a los diferentes tejidos.

    Los aminoácidos vuelven a unirse luego para formar proteínas humanas como la hemoglobina y algunas hormonas. Las proteínas que el organismo desecha se transforman en urea, que pasa a formar parte de la orina y es eliminada al exterior.

    FUNCIONES

    aporte de aminoácidos esenciales, necesarios para el crecimiento y la reparación de los tejidos

    equilibrio ósmico de las células

    forman parte de glucoproteínas, hormonas, lipoproteínas, enzimas, anticuerpos

    Constituyen el 20 % del peso corporal en un adulto.

    Votar

    Ingresar una calificación para del 1 al 10, siendo 10 el máximo puntaje.

    Para que la votación no tenga fraude, solo se podrá votar una vez este recurso.

    Comentarios de los usuarios


    Agregar un comentario:


    Nombre y apellido:

    E-Mail:

    Asunto:

    Opinión:



    Aún no hay comentarios para este recurso.
     
    Sobre ALIPSO.COM

    Monografias, Exámenes, Universidades, Terciarios, Carreras, Cursos, Donde Estudiar, Que Estudiar y más: Desde 1999 brindamos a los estudiantes y docentes un lugar para publicar contenido educativo y nutrirse del conocimiento.

    Contacto »
    Contacto

    Teléfono: +54 (011) 3535-7242
    Email:

    Formulario de Contacto Online »